Quick Review of Lecture 9 Feb. 4, 2019

- Lewis Structures
- Concepts and Vocabulary: Formal Charges, Valences, Oxidation States
- Resonance Structures; Hyper and Hypovalent sites
- > VSEPR

Lewis Structures

- > A bond between two atoms is formed by means of sharing of a pair of electrons
- > Each atom shares electrons with neighbors to achieve a total of eight valence electrons
- > Determine connectivity of the atoms in the molecule
- > Sum up the total number of valence electrons in the molecule
- Distribute the electrons so that each atom acquires an octet (duet for H!) in either
 - a) bonding pairs (denoted : or) shared between a pair of atoms, or
- b) lone pairs (denoted:) that **belong** to a single atom (i.e., "unused" in making bonds and occupy more space than bonded pairs).

Examples: HF, CF₄, NH₃, COCl₂, CO, CO₂, N₂O, H₂CN₂, N₃-, N₅+

Vocabulary and Concepts

Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts

Valence: Number of electrons an atom uses in bonding.

Oxidation State or Number: Charge on atoms according to a set of rules That consider the electronegativity of atoms within the molecule or material.

- 1) In pure element, Oxidation Number = 0
- 2) F, the most electronegative element, in a molecule is -1
- 3) O is typically -2; sometimes (in peroxides), -1
- 4) Alkali metals, +1; Alkaline Earth metals, +2; Gp 3, generally +3; Transition metals variable + charged.
- 5) H is +1 when combined with more electroneg. element; -1 when combined with more electropositive element. *Therefore, H in compound with any M is a hydride, H*-1.
- 6) Summation of Ox. States must equal charge on ion; or zero if neutral molecule.

Formal Charges: Charge on atom according to equation:

F.C. = # valence electrons - # of electrons in non-bonded pairs $-\frac{1}{2}$ # of electrons in bonds

Coordination number: Number of atoms bonded to the atom in question.

Parkin, Ġ. *J. Chem. Educ.* **2006**, *83*, 791 Jensen, W. B. *J. Chem. Educ.* **2006**, *83*, 1751

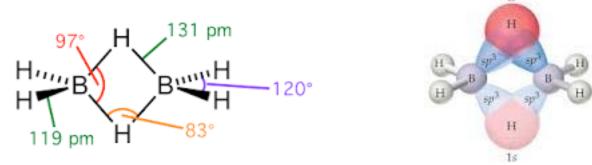
Resonance Structures: A Way to Delocalize Electrons in Valence Bond Descriptions

- Resonance structures represent different Lewis structures for the same molecule
- Resonance structures must have the same connectivity and the same total no. of electrons
- ➤ Resonance structures are *not isomers*, but are various limiting descriptions of the same molecule.
- ➤ If a molecule can be represented by more than one viable resonance structure, its electronic structure should be thought of as a "blend" of the resonance structures. Such "blending" generally lowers the energy of the system.
- Resonance structure may be of equal or unequal importance ("weight").
- ➤ Guiding principles: **Favor** <u>octets</u>; **minimize** <u>formal charges</u>*; **disfavor** formal positive charge on more electronegative atoms

 $^{\Theta}$ O-C \equiv N \longleftrightarrow O=C=N $^{\Theta}$

^{*}Pauling's Electroneutrality Principle

Hypervalence


- ➤ Hypervalence may be a misnomer by some definitions, but it would probably be the most commonly used misnomer in chemistry
- Aka "octet expansion"
- ➤ Can be represented either by an increased number of atoms bound to the "hypervalent" atom or by an increased number of (multiple) bonds to the "hypervalent" atom. Applies to 3rd row and higher non-metals bonds to highly electronegative elements.

Hypovalence

- > Hypovalence occurs in electron deficient molecules such as BH₃
- Can lead to unexpected multiple bonds such as in BF₃
- > Can lead to nucleophilic addition processes such as in

$$BF_3 + F^- \longrightarrow BF_4^-$$

> Can lead to formation of dimers such as B, H,

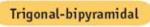
> Both processes "neutralize" the electron deficient Boron

Lecture 10 February 6, 2019

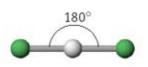
- > Positions of Electron Pairs in Molecules
- > Hybrid Orbitals
- > Shapes of Molecules (Common Stereochemistries in Main Group Compounds)
- > VSEPR
- Symmetry Operations and Elements

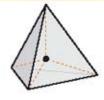
Can Atomic Orbital Overlap Predict Molecular Shapes?

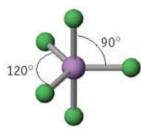
Consider: HF, H₂S, PH₃ Bonds of all can be ascribed to overlap of 3p valence orbital on F, S, or P with 1s H orbital

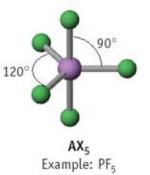

But: H₂O, NH₃, CH₄!!!

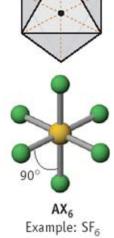
Need Hybrid orbitals: sp³

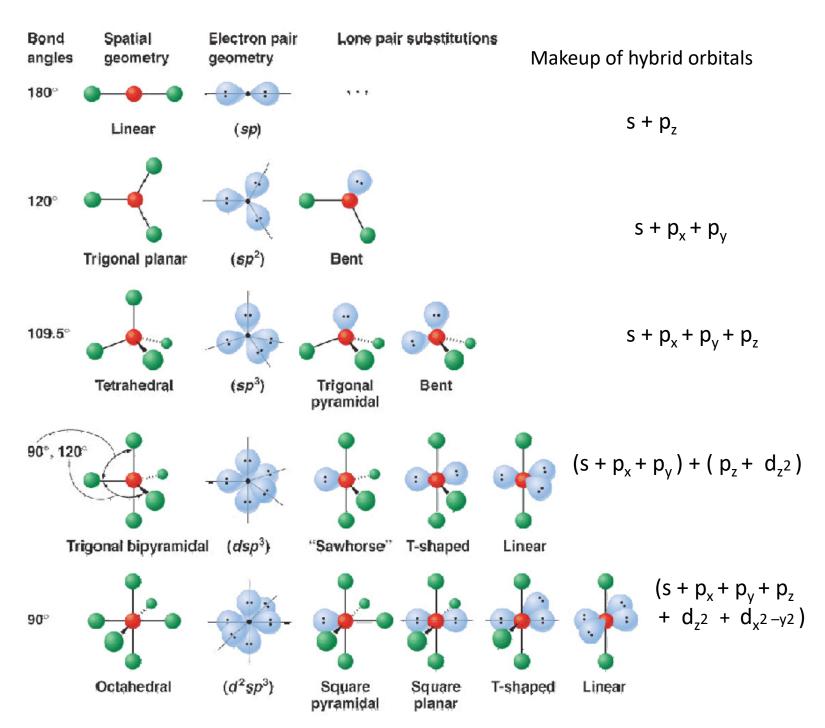

Linear



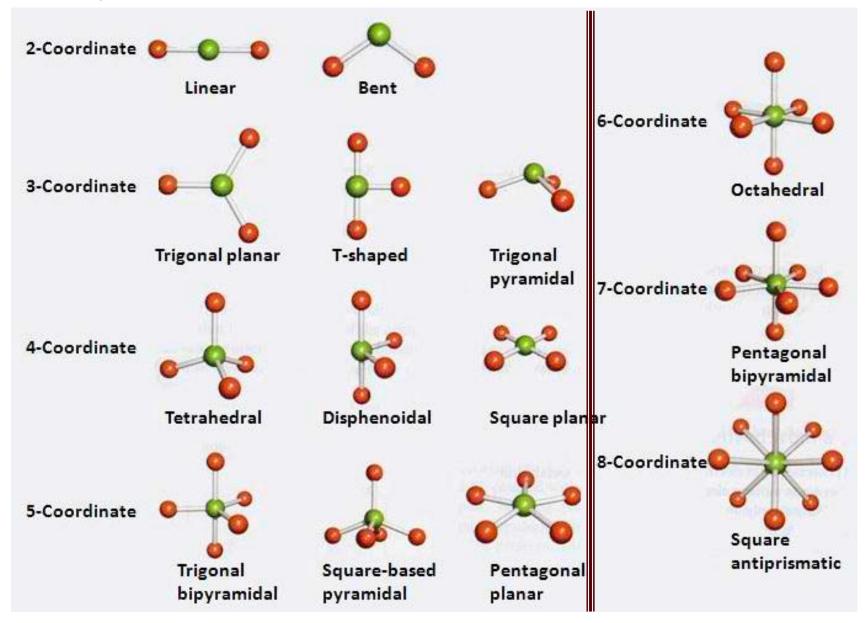


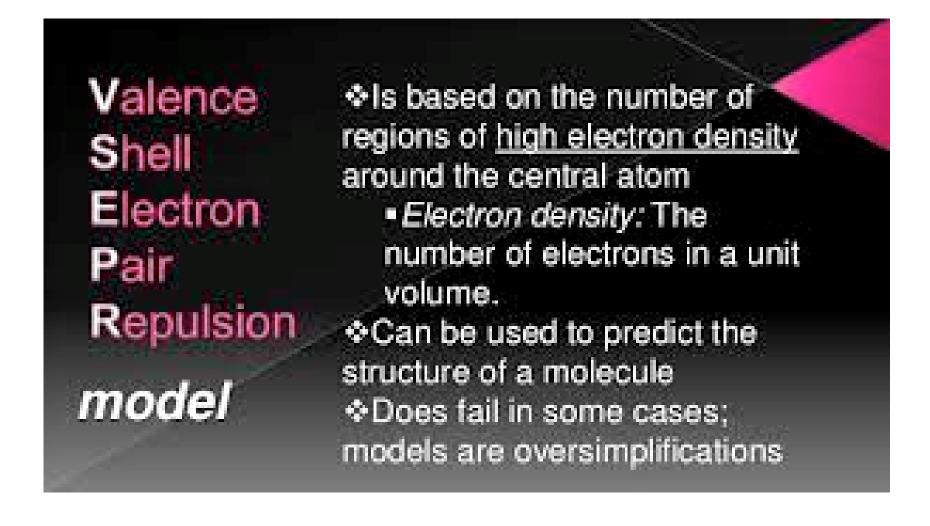



Trigonal-planar


AX₂ Example: BeF₂

AX₃ Example: BF₃


120°


AX₄ Example: CF₄

109.5°

Descriptions of geometries in mono-centric molecules: It is where The atoms are. . .

Geometries may be predicted via VSEPR: Valence Shell Electron Pair Repulsion

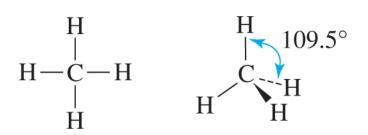
- > Electron pairs of bonds and lone pairs repel each other
- > The geometry around any atom is a consequence of minimizing these repulsive interactions
- > Lone pairs are considered to be larger than bonding pairs
- ➤ Multiple bonds are considered to be in the same space as, but larger than, single bonds
- > Several common geometries depending on the number of "occupants" around the atom in question
- ➤ The "Steric number" of the molecule determines the hybrid orbitals used to account for sigma bonds and lone pairs

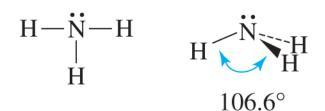
Remember the following things:

- Multiple bonds behave as a single electron pair bond for the purpose of VSEPR.
- Order of repulsion between lone pair and lone pair (lp - lp), lone pair and bonding pair (lp- lp), and bonding pair and bonding pair (bp- bp) is lp - lp >> lp- bp >bp -bp.

when a molecule has lone pairs of electrons, the bonding electron pairs are pushed closer and thus the bond angle is decreased.

https://www.youtube.com/watch?v=1ZlnzyHahvo
https://www.youtube.com/watch?v=xNYiB 2u8J4

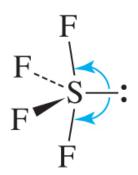

In TBP, lone pairs go in Equatorial positions rather Than axial positions.
This minimizes repulsions.

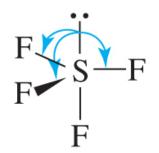

www.youtube.com/watch?v=nxebQZUVvTg

http://ocw.mit.edu/courses/chemistry/5-111principles-of-chemical-science-fall-2008/videolectures/lecture-13/

https://www.youtube.com/watch?v=1ZlnzyHahvo
https://www.youtube.com/watch?v=xNYiB 2u8J4

VSEPR rationalizes bond angles and geometry of molecules



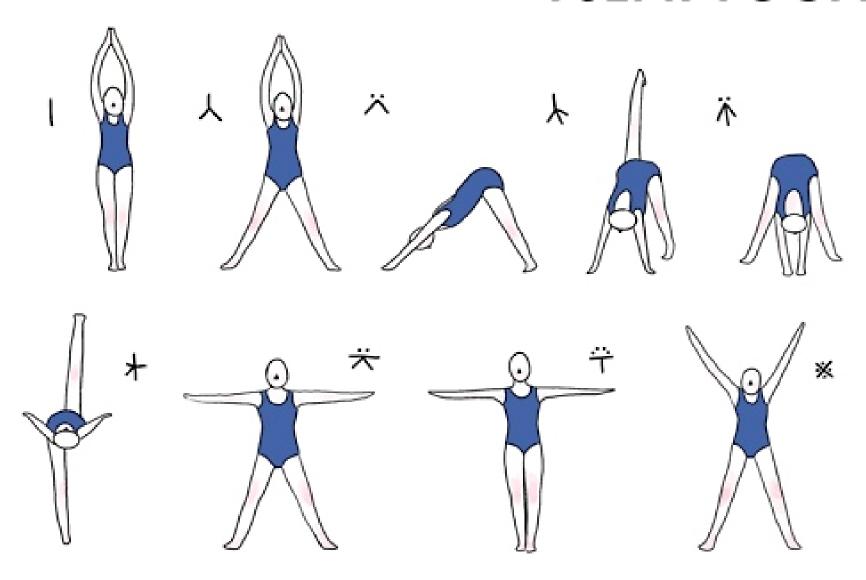


© 2011 Pearson Education, Inc.

For H₂O and NH₃, lone pairs are in sp³ hybrid orbitals; for H₂S and PH₃ No hybrid orbitals needed.

Equatorial lone pair

Axial lone pair


© 2011 Pearson Education, Inc.

For SF₄ the lone pair is more stable in the sp² subset of the sp³d hybrid orbitals

VSEPR and the AXE Description of Electron Arrangements

Molecule Type	Shape	Electron arrangement [†]	Geometry [‡]	Examples
AX ₂ E ₀	Linear			BeCl ₂ , HgCl ₂ , CO ₂
AX ₃ E ₀	Trigonal planar			BF ₃ , CO ₃ ²⁻ , NO ₃ , SO ₃
AX ₄ E ₀	Tetrahedral			CH ₄ , PO ₄ ³⁻ , SO ₄ ²⁻ , CIO ₄ ⁻ , TiCl ₄ , XeO ₄
AX ₅ E ₀	Trigonal bipyramidal			PCI ₅
AX ₆ E ₀	Octahedral			SF ₆ , WCI ₆

VSEPR YOGA

VSEPR Theory

# of Atom s	# of electron pairs	Formula Type	Geometry	Bond Angle	Examples	Hybridiza tion	Structure
3	0	AB₂	Linear	180	CO ₂ , CS ₂ , BeH ₂		
3	1	AB ₂	Bent	117.5	GeCl ₂ , SO ₂ , NO [*] 2	sp ²	
3	2	AB ₂	Bent	105	H₂O, H₂S	sp ³	
4	0	AB ₃	Trigonal planar 💪	120	BCI ₃ , AIBr ₃ ,	sp ²	}
4	1	AB ₃	Pyramidal	107	NH ₃ , PCl ₃ , AsBr ₃	sp ³	3
4	2	AB ₃ (Inter halogen)	T-shaped	90, 180	ICl ₃ , BrF ₃ ,	sp³d	7

5	0	AB ₄	Tetrahedron	109.5	CCI ₄ , CH ₄ , SiBr ₄	sp ³	-
5	1	AB ₄	Distorted tetrahedron (Seesaw)		SF ₄ , SB _{r₄} , SeCl ₄	sp³d	350
5	2	AB ₄	Square planar	90, 180	XeF ₄ ,	sp ³ d ²	3
6	0	AB ₅	rigonal bipyramidal	90, 180, 120	PCI ₅ ,	sp³d	
6	1	AB ₅ (Inter halogen)	Square pyramid		CIF ₅ , ICI ₅ , IBr ₅	sp ³ d ²	ميان
7	0	AB ₆	Octahedron	90, 180	SF ₆	sp ³ d ²	

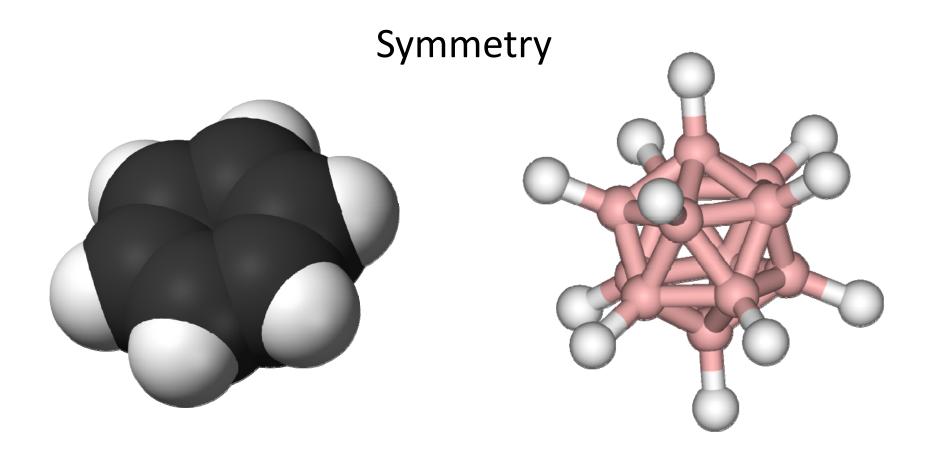
Steric Number	Geometry	Examples	Calculated Bond Angles		Hybrid orbitals
2	Linear	CO ₂	180°	0=C=0	$sp = s + p_z$
3	Trigonal (triangular)	SO ₃	120°	O S	$sp^2 = s + p_x + p_y$
4	Tetrahedral	CH ₄	109.5°	H H	$p^3 = s + p_x + p_y + p_z$
5	Trigonal bipyramidal	PCI ₅	120°, 90°	CI. P—CI SP CI (S	$p^{3}d =$ + $p_{x} + p_{y}$) + $(p_{z} + d_{z^{2}})$
6	Octahedral	SF ₆	90°	E E	$p^{3}d^{2} = + p_{x} + p_{y} + p_{z} +$
7	Pentagonal bipyramidal	IF ₇	72°, 90°	F F F F	$d_{x^2-y^2} + d_{z^2}$
8	Square antiprismatic	TaF ₈ ^{3–}	70.5°, 99.6°, 109.5°	F F F	

How about the 5 pairs of electrons about Cl in ClF₃?

Analysis of lone pair/lone pair vs. lone pair/bonded pair vs. bonded pair/bonded pair repulsions

$$F - CI \stackrel{F}{\underset{}} F \qquad : -CI \stackrel{F}{\underset{}} F \qquad F - CI \stackrel$$

		Calculated		Experimental
Interaction	Α	В	C	
lp-lp	180°	90°	120°	Cannot be determined
lp-bp	6 at 90°	3 at 90°	4 at 90°	Cannot be determined
		2 at 120°	2 at 120°	
bp-bp	3 at 120°	2 at 90°	2 at 90°	2 at 87.5°
		1 at 120°		Axial Cl—F 169.8 pm
				Equatorial Cl—F 159.8 pm

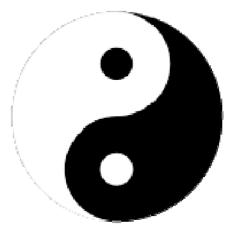

ം ഫ്രൂപ്രെ larger pairs of electrons adopt equatorial plane positions, i.e., sp² subset

ric Number —	Number of Lone Pairs on Central Atom			
None	1	2	3	

2
$$:Cl=Be=Cl:$$

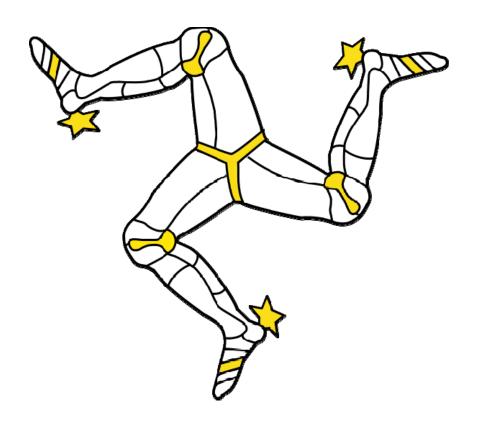
Lecture 11 February 8, 2019

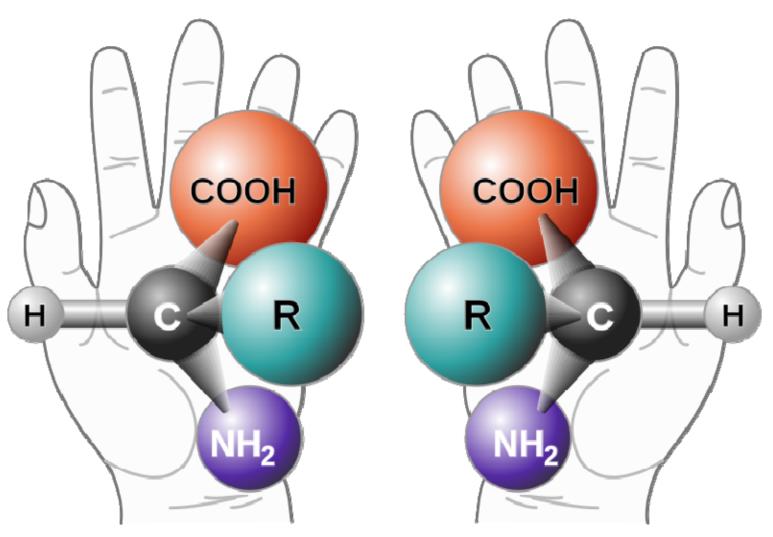
- Using the shapes of Molecules to define:
- Symmetry Operations
- > Symmetry Elements
- Point Groups and Assignments


Intuitively, we know symmetry when we see it.

But how do we put in quantitative terms that allows us to compare, assign, classify?

Symmetry: mirror planes




Symmetry

C₃ Rotation Axis

Chirality: Non-superimposable mirror images (aka optical isomers or enantiomers)

Specifically, a chiral compound can contain no improper axis of rotation (S_n) , which includes planes of symmetry and inversion center. Asymmetric molecules are always chiral.